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Self-organized pulse generator in a reaction-diffusion system
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We carry out computer simulations of a Bonhoeffer—van der Pol-type reaction-diffusion equation to study
the properties of propagating pulses and their collision. By choosing a suitable nonlinearity where a stable limit
cycle solution coexists with an equilibrium uniform solution, it is shown that two pulses propagating to the
opposite directions do not annihilate upon collision but generate a localized domain which persistently emits
pulses traveling outward. The stability of the localized domain and the propagating pulses are explored nu-

merically.

PACS number(s): 02.50.—r, 82.20.Mj, 82.30.—b

Pattern formation and self-organization far from equilib-
rium have attracted much attention recently [1]. One of the
features of systems far from equilibrium is a variety of curi-
ous dynamical orders which are not seen in thermal equilib-
rium. Reaction-diffusion equations have been used success-
fully for modeling these spatiotemporal structures. One
example is the phase field approach [2,3] which is useful for
computer simulations of melt growth. The Bonhoffer—van
der Pol (BvP) -type equation which exhibits excitability has
also been studied [4]. In fact, the BvP equation has been
applied to various phenomena such as pulse propagation
along the nerve axon, spiral waves in the Belousov-
Zhabotinsky reaction, animal coating [5], and glow discharge
[6—8]. Thus the BvP equation is one of the prototype model
equations for pattern formation and self-organization far
from equilibrium.

In this paper, we shall study the BvP equation in the pa-
rameter region where, if diffusion is absent, a uniform sta-
tionary state and a limit cycle oscillation coexist. We will
show that when the diffusion turns on, propagating pulses
exhibit quite unusuval properties which have not been re-
ported so far.

The BvP equation is the following coupled set of equa-
tions for the activator u and the inhibitor v:

ou )

T-{;=DMV u+f(u)—uv, (1a)
dv ’
-07=DUV vtu—yv, (1v)

where f(u) contains cubiclike nonlinearity. Throughout this
paper, we put f(u) as

b u—a o a
tan T + tan 3

If we choose 6=0.05 and @=0.15, Egs. (1) for
D,=D,=vy=0 and 7=1 admit both the stationary uniform
solution ¥ =v =0 and a limit cycle oscillation, both of which
are stable locally as is shown in Fig. 1. This coexistence

1
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FIG. 1. Limit cycle orbit (thick line) and equilibrium solution
(black circle) of Egs. (1) for §=0.05 and a=0.15 in the u-v plane.
The thin line indicates the function v = f(«) whereas the dotted line
means the separatrics.

appears in the interval 0.1<a<0.16 for §=0.05. When
a>0.16, a stable limit cycle oscillation does not exist and
the system is simply excitable. To the authors’ knowledge,
the BvP equation (1) has not been studied in this parameter
regime previously. Computer simulations shown below have
been carried out for D,=7=1, y=0, and §=0.05 and by
changing other parameters D, and a. The oscillatory prop-
erty is strengthened when we decrease the value of a
whereas a propagating pulse tends to be unstable when we
increase the diffusion constant D, of the inhibitor.

It should be noted that the parameters D, and 7 are of
ordinary magnitude. This is quite in contrast to the previous
studies [4,9—-11] where these parameters are assumed to be
extremely small so that we can apply a singular perturbation
method. Smallness of the parameters a and & in (1c) is also
essential in the present problem. Coexistence of the uniform
stationary state and a limit cycle oscillation emerges under
these conditions. Furthermore the limit cycle oscillation in
Fig. 1 still preserves the excitability in a sense that the mo-
tion in the u-v space is not uniform but slows down near
u=a and v<<0 and then accelerates for u=a as if it is re-
pelled from the state u=v=0.

First we examine a head-on collision of two pulses in one
dimension. It is well known that pulses in a dissipative sys-
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FIG. 2. (a) Collision and annihilation of two single pulses for
D,=0 and a=0.15. The full (dotted) line indicates the profile of u
(v). The time steps are t=0, 10, 15, 20 from top to bottom. (b)
Collision of pulse trains and formation of a pulse generator for
D,=0 and a=0.15. The time steps are ¢=0, 20, 30, 60 from top to
bottom.

tem generally annihilate upon collision. This is indeed the
case in Egs. (1) for sufficiently large values of a where the
system is excitable. We have found, however, that a qualita-
tively different behavior occurs in the coexistence region.
Two single pulses decay upon collision as shown in Fig. 2(a)
where D, =0 and a=0.15. This should be compared with a
collision of two-wave trains in Fig. 2(b) for the same values
of the parameters. In this process, the front trains annihilate
as usual but a localized oscillatory domain forms after the
collision of the second trains and furthermore this domain
produces sustained wave trains propagating outward. We
have also simulated collision of an n-wave train and an
m-wave train with n>m>2. In this case, an (n—m)-wave
train survives and a similar localized domain which emits
propagating waves is constituted. We call the localized do-
main a self-organized pulse generator. It is noted here that
the oscillating amplitude of ¥ and v and the period at the
center of the domain are almost identical to those of the limit
cycle without diffusion.

One can see from Fig. 2(b) that the region of the pulse
generator gradually expands with time as if the oscillating
domain invades the surrounding quiescent state while emit-
ting the outgoing waves. We have found for longer runs that
the speed and the spatial period of the wave train gradually
increase with time while the domain itself expands. This
slow change of wave trains is attributed to a phase diffusion.
However, the intrinsic asymptotic behavior is quite difficult
to analyze numerically because of the boundary effect as we
have imposed the Neumann boundary condition at the sys-
tem boundary.

In order to examine the stability of the pulse generator
and the emitted wave trains we have carried out alternative
simulations. That is, we start with the initial condition
u(x,0)=exp(—x%>) and v(x,00=0 for —L<x<L with
L=100. We have found that this initial inhomogenity trig-
gers a pulse generator and wave trains as in Fig. 2(b) after
collision.

We have explored the time evolution of the pulse genera-
tor and the emitted waves by changing the parameters D,
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FIG. 3. Stability diagram in D ,-a plane.

and a. Figure 3 summarizes the results. Typically four dif-
ferent spatiotemporal patterns are classified as is indicated
respectively by I, II,...,IV. When the diffusion constant
D, is extremely large as in the region V, the initial localized
domain decays and disappears.

In region I where D, is small, the initial localized domain
undergoes oscillation and it forms a pulse generator which
produces successive wave trains. This is identical to the situ-
ation after collision shown in Fig. 2(b). Figure 4(a) shows
the spatiotemporal pattern where the contour u=0.001 is
plotted.

In region II, the initial localized domain still acts as a
pulse generator. However, the propagating pulse trains be-
come unstable. That is, an emitted pulse propagates for a
while and then dies out. This disappearance of a pulse occurs
repeatedly at the front of a pulse train. Since the speed of a

(a) (b)

(e) (f)

FIG. 4. Spatiotemporal patterns of the pulse generator and the
emitted pulses for (a) D, =0, (b) 0.7, (c) 0.9, (d) 1.1, (e) 1.6 and (f)
6.0. The parameter a is fixed as a=0.15. The lines indicate the
contour lines of u#=0.001. The abscissa is the space axis whereas
the ordinate is the time axis.
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pulse train is larger than the decay rate of a front pulse, the
front moves slowly outward. Figure 4(b) indicates the behav-
ior for D,=0.7 and a=0.15. It is also noted that decay of a
pulse does not necessarily occur only at the front of a pulse
train. It is often observed in the middle of a pulse train as
shown in Fig. 4(c) for D,=0.9. This can be understood as
follows; Since the pulse generator is expanding, a situation
such that two pulses emitted successively whose distance is
too short occurs for intermediate values of D, in region II. In
this case, one of the pulses cannot survive and disappears.
For larger values of D, where expansion of the pulse gen-
erator becomes negligible, only the front pulse decays.

The zig-zag pattern in Fig. 4(c) becomes smooth in region
III. Figure 4(d) shows an example for D,=1.1 and
a=0.15. What happens is an oscillation of the domain width
as well as inside of the domain. We emphasize that this os-
cillation should not be confused with another type of oscil-
lation of a domain in the BvP equation (1). It has been re-
ported that a stable localized motionless domain, which is a
solution of Egs. (1) for small values of D, , begins to oscil-
late when we decrease 7. This was called a breathing motion
[10-12]. Recall that the above-mentioned more complicated
“double” oscillation observed in region III emerges for D,
and 7 of the order of unity.

Although not displayed in the figures, the double oscilla-
tion appears after a long transient in region III with fairly
large values of D, such as D,=2.0 and a=0.13. In the
transient regime, the pattern looks like that in Fig. 4(c).

When we further increase D, , we enter region IV where
emitted pulses cannot propagate any more. This is because
the inhibitor generated by the reaction term in Eq. (1a) rap-
idly diffuses to the front of a pulse so that propagation is
inhibited. However, the domain is still oscillating. An ex-
ample for D,= 1.6 and a=0.15 is shown in Fig. 4(¢). This is
somehow similar to the breather solution well known in the
nonlinear Schrodinger equation although the present system
(1) is purely dissipative. By a detailed numerical analysis, we
have confirmed that the change between in Figs. 4(d) and
4(e) occurs as a supercritical Hopf bifurcation.

In region V, the uniform state becomes more stable. Fig-
ure 4(f) shows that an oscillatory domain with the initial
width /=100 shrinks and eventually disappears for
D,=6.0 and a=0.15.

The persistent outgoing wave train corresponds to a con-
centric wave (target pattern) in higher dimensions. We have
indeed verified numerically that a target pattern emerges
from a self-organized pulse generator localized in two di-
mensions as shown in Fig. 5. It is emphasized that the target
pattern appears without any heterogeneous pacemaker. What
is necessary is only an initial concentration deviation. We
have also obtained spiral waves and the reconnection of
pulses in two dimensions. However, these results will be
reported separately elsewhere.

There are several other model equations which have a
target pattern without heterogeneous pacemakers. However
we emphasize that there are some essential differences. First
of all, BvP equation (1) is a two-variable model whereas
almost all of the previous models are three— (or more) vari-
able. For instance, a spatially localized concentric wave so-
lution has been obtained in the complex time-dependent
Ginzburg-Landau (TDGL) equation coupled with a phase
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FIG. 5. Two-dimensional target pattern for D,=0 and
a=0.15. The system size is 200X 200.

variable or with another complex field [13]. Computer simu-
lations of a BvP-type model equation for glow discharge [6]
have shown automatically excited pulse trains similar to that
in Fig. 4(a). However, the time-evolution equation contains a
long range nonlocal interaction. In order to make this inter-
action short ranged like a diffusion term, one needs to intro-
duce an extra variable so that the model in Ref. [6] is essen-
tially three-variable. Mikhailov [14] has also proposed a
three-variable model for a nonlocalized target pattern. Thus
the mechanism of the pulse generation in these model sys-
tems is expected to be different from that of Egs. (1).

A two-variable equation closely related to the present sys-
tem is probably the one studied by Thual and Fauve [15].
They have carried out simulations of the complex TDGL
equation with a subcritical Hopf bifurcation and found a lo-
calized target solution. Since their system has a coexistence
of a uniform solution and a limit cycle, the basic character is
quite similar to Egs. (1). However, it should be noted that in
order for a stable wave train to exist, the excitability is es-
sential. The complex TDGL equation is not excitable but
simply oscillatory and therefore does not admit a stable wave
train.

By computer simulations of a generalized complex TDGL
equation, Brant and Deissler [16] have found that pulses in a
dissipative system do not necessarily disappear upon colli-
sion. In their results, a collision of two pulses is similar to
that of two solitons in an integrable system. As shown above,
Egs. (1) exhibit more variety of spatiotemporal patterns in a
collision.

In summary, we have investigated the pattern dynamics of
Egs. (1). One of the most important properties of the system
is the existence of a locally stable limit cycle which contains,
to some extent, an excitability character. A pulse generator is
self-organized by a collision of pulses or by a local concen-
tration inhomogeneity. In two dimensions, this causes a tar-
get pattern which is apparently similar to that observed in the
Belousov-Zhabotinsky reaction. In the present results, the
frequency of oscillation at the center of a pulse generator is
close to that of a uniform oscillation, which is not in accord
with experiments [17]. However a detailed comparison is
meaningless since the parameters D, and 7 are chosen to be
of order unity in the present system. Thus, at present, there
are no real experiments which support directly the predic-
tions given above. However some aspect of the results is of
great importance in its own right. For example, a collision of
single pulses does not cause a pulse generator but that of two
(or more) wave trains does. This means that emission of
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waves depends on the number of stimuli. We of course note
the implication of this to a neural system.

A global phase diagram is obtained in the D,-a plane.
The basic feature is the coexistence of the limit cycle and a
uniform state. When D, and a are small, a domain of limit
cycle oscillation invades the surrounding uniform state. By
increasing the value of D, a propagating pulse tends to be
unstable so that the expansion of domain is suppressed. In
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this way, the phase diagram can be interpreted qualitatively.
However a quantitative analytical theory seems quite diffi-
cult, which is left for a future study.
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FIG. 3. Stability diagram in D ,-a plane.



FIG. 4. Spatiotemporal patterns of the pulse generator and the
emitted pulses for (a) D, =0, (b) 0.7, (c) 0.9, (d) 1.1, (e) 1.6 and (f)
6.0. The parameter a is fixed as a=0.15. The lines indicate the
contour lines of ¥ =0.001. The abscissa is the space axis whereas
the ordinate is the time axis.



FIG. 5. Two-dimensional target pattern for D,=0 and
a=0.15. The system size is 200 200.



